Chemwatch Independent Material Safety Data Sheet Issue Date: 21-Jul-2011 NC317ECP

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

DUNLOP FINE COAT RENDER

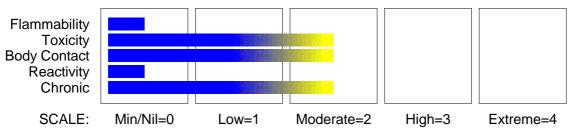
SYNONYMS

"Premium Smooth finish wall render"

PRODUCT USE

For rendering and smoothing brickwork, concrete surfaces.

SUPPLIER


Company: Ardex Australia Pty Ltd Address: 20 Powers Road Seven Hills NSW, 2147 Australia Telephone: 1800 224 070 Emergency Tel: 1800 222 841 (General Information -Fax: +61 2 9838 7817

Section 2 - HAZARDS IDENTIFICATION

STATEMENT OF HAZARDOUS NATURE

HAZARDOUS SUBSTANCE. NON-DANGEROUS GOODS. According to NOHSC Criteria, and ADG Code.

CHEMWATCH HAZARD RATINGS

RISK

SAFETY

Irritating to eyes and skin.

• Avoid contact with eyes.

Avoid contact with skin.

- Wear suitable gloves.
- Wear eye/ face protection.
- Use only in well ventilated areas.
- Keep container in a well ventilated place.
- To clean the floor and all objects contaminated by this material, use water and detergent.
- In case of contact with eyes, rinse with plenty of water and contact Doctor or Poisons Information Centre.
- If swallowed, IMMEDIATELY contact Doctor or Poisons Information Centre (show this container or label).

• In case of accident by inhalation: remove casualty to fresh air and keep at rest.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS			
NAME	CAS RN	%	
portland cement	65997-15-1	30-60	
graded sand	14808-60-7.	30-60	
lightweight aggregates		10-30	
acrylic copolymer		5-20	
other nonhazardous ingredients		10-40	

Section 4 - FIRST AID MEASURES

SWALLOWED

- For advice, contact a Poisons Information Centre or a doctor at once.

- Urgent hospital treatment is likely to be needed.
- If swallowed do NOT induce vomiting.

- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to

maintain open airway and prevent aspiration.

- Observe the patient carefully.

- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.

- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.

- Transport to hospital or doctor without delay.

EYE

■ If this product comes in contact with the eyes:

- Immediately hold eyelids apart and flush the eye continuously with running water.

- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.

- Transport to hospital or doctor without delay.

- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin or hair contact occurs:

- Immediately flush body and clothes with large amounts of water, using safety shower if available.

- Quickly remove all contaminated clothing, including footwear.

- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre.

- Transport to hospital, or doctor.

INHALED

■ - If fumes or combustion products are inhaled remove from contaminated area.

- Lay patient down. Keep warm and rested.

- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.

- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.

- Transport to hospital, or doctor.

NOTES TO PHYSICIAN

Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves for fire only.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

FIRE/EXPLOSION HAZARD

Non combustible.

- Not considered a significant fire risk, however containers may burn, silicon dioxide (SiO2). Decomposes on heating and produces toxic fumes of:

FIRE INCOMPATIBILITY

None known.

HAZCHEM

None

Personal Protective Equipment

Breathing apparatus. Gas tight chemical resistant suit. Limit exposure duration to 1 BA set 30 mins.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Wear impervious gloves and safety goggles.
- Trowel up/scrape up.
- Place spilled material in clean, dry, sealed container.
- Flush spill area with water.

MAJOR SPILLS

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Neutralise/decontaminate residue (see Section 13 for specific agent).
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

Chemwatch Independent Material Safety Data Sheet Issue Date: 21-Jul-2011 NC317ECP

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

SUITABLE CONTAINER

- Polyethylene or polypropylene container.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

STORAGE INCOMPATIBILITY

- Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.
- Avoid contact with copper, aluminium and their alloys.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS Source	Material	TWA mg/m³	Notes
Australia Exposure Standards	portland cement (Portland cement (a))	10	(see Chapter 14)
The following materials had no OE • graded sand:	Ls on our records CAS:14808- 60-	7	
EMERGENCY EXPOSURE	LIMITS Revised	IDLH	

Chemwatch Independent Material Safety Data Sheet Issue Date: 21-Jul-2011 NC317ECP

portland cement 13763	5, 000
graded sand 85014	50

MATERIAL DATA

DUNLOP FINE COAT RENDER: Not available

PORTLAND CEMENT:

for calcium silicate: containing no asbestos and <1% crystalline silica ES TWA: 10 mg/m3 inspirable dust

TLV TWA: 10 mg/m3 total dust (synthetic nonfibrous) A4

Although in vitro studies indicate that calcium silicate is more toxic than substances described as "nuisance dusts" is thought that adverse health effects which might occur following exposure to 10-20 mg/m3 are likely to be minimal. The TLV-TWA is thought to be protective against the physical risk of eye and upper respiratory tract irritation in workers and to prevent interference with vision and deposition of particulate in the eyes, ears, nose and mouth.

For calcium oxide:

The TLV-TWA is thought to be protective against undue irritation and is analogous to that recommended for sodium hydroxide.

The concentration of dust, for application of respirable dust limits, is to be determined from the fraction that penetrates a separator whose size collection efficiency is described by a cumulative log-normal function with a median aerodynamic diameter of 4.0 μ m (+-) 0.3 μ m and with a geometric standard deviation of 1.5 μ m (+-) 0.1 μ m, i.e..generally less than 5 μ m.

NOTE: This substance has been classified by the ACGIH as A4 NOT classifiable as causing Cancer in humans. Portland cement is considered to be a nuisance dust that does not cause fibrosis and has little potential to induce adverse effects on the lung.

GRADED SAND:

NOTE: This product contains negligible amount of respirable dust.

PERSONAL PROTECTION

EYE

Chemical goggles.

- Full face shield may be required for supplementary but never for primary protection of eyes

- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent].

HANDS/FEET

■ - Wear chemical protective gloves, eg. PVC.

- Wear safety footwear or safety gumboots, eg. Rubber.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

CHEMWATCH 25-8987 Version No:2.0 CD 2011/2 Page 6 of 10 Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

RESPIRATOR

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. For further information consult site specific CHEMWATCH data (if available), or your Occupational Health and Safety Advisor.

ENGINEERING CONTROLS

■ Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Welldesigned engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE

Off-white creamy paste; does not mix with water.

PHYSICAL PROPERTIES

Does not mix with water.

State Melting Range (°C) Boiling Range (°C) Flash Point (°C) Decomposition Temp (°C) Autoignition Temp (°C) Upper Explosive Limit (%) Lower Explosive Limit (%)	Non Slump Paste Not Available Not Available Not Available Not Available Not Available Not Available Not Available	Molecular Weight Viscosity Solubility in water (g/L) pH (1% solution) pH (as supplied) Vapour Pressure (kPa) Specific Gravity (water=1) Relative Vapour Density (air=1)	Not Applicable Not Available I mmiscible Not Available Not Available Not Available Not Available Not Available
Volatile Component (%vol)	Not Available	, ,	Not Available

Section 10 - STABILITY AND REACTIVITY

CONDITIONS CONTRIBUTING TO INSTABILITY

■ Product is considered stable and hazardous polymerisation will not occur. For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

ACUTE HEALTH EFFECTS

SWALLOWED

■ Not normally a hazard due to the physical form of product. The material is a physical irritant to the gastro-intestinal tract.

EYE

This material can cause eye irritation and damage in some persons.

SKIN

This material can cause inflammation of the skin oncontact in some persons.

Handling wet cement can cause dermatitis. Cement when wet is quite alkaline and this alkali action on the skin contributes strongly to cement contact dermatitis since it may cause drying and defatting of the skin which is followed by hardening, cracking, lesions developing, possible infections of lesions and penetration by soluble salts.

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Effects on lungs are significantly enhanced in the presence of respirableparticles.

CHRONIC HEALTH EFFECTS

■ Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.

Cement contact dermatitis (CCD) may occur when contact shows an allergic response, which may progress to sensitisation. Sensitisation is due to soluble chromates (chromate compounds) present in trace amounts in some cements and cement products. Soluble chromates readily penetrate intact skin. Cement dermatitis can be characterised by fissures, eczematous rash, dystrophic nails, and dry skin; acute contact with highly alkaline mixtures may cause localised necrosis.

Cement eczema may be due to chromium in feed stocks or contamination from materials of construction used in processing the cement. Sensitisation to chromium may be the leading cause of nickel and cobalt sensitivity and the high alkalinity of cement is an important factor in cement dermatoses [ILO].

Repeated, prolonged severe inhalation exposure may cause pulmonary oedema and rarely, pulmonary fibrosis. Workers may also suffer from dust-induced bronchitis with chronic bronchitis reported in 17% of a group occupationally exposed to high dust levels.

Respiratory symptoms and ventilatory function were studied in a group of 591 male Portland cement workers employed in four Taiwanese cement plants, with at least 5 years of exposure (1). This group had a significantly lowered mean forced vital capacity (FCV), forced expiratory volume at 1 s (FEV1) and forced expiratory flows after exhalation of 50% and 75% of the vital capacity (FEF50, FEF75). The data suggests that occupational exposure to Portland cement dust may lead to a higher incidence of chronic respiratory symptoms and a reduction of ventilatory capacity.

Chun-Yuh et al; Journal of Toxicology and Environmental Health 49: 581-588, 1996.

Overexposure to respirable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity, chest infections

Repeated exposures, in an occupational setting, to high levels of fine- divided dusts may produce a condition known as pneumoconiosis which is the lodgement of any inhaled dusts in the lung irrespective of the effect. This is particularly true when a significant number of particles less than 0.5 microns (1/50,000 inch), are present. Lung shadows are seen in the X-ray. Symptoms of pneumoconiosis may include a progressive dry cough, shortness of breath on exertion (exertional dyspnea), increased chest expansion, weakness and weight loss. As the disease progresses the cough produces a stringy mucous, vital capacity decreases further and shortness of breath becomes more severe. Other signs or symptoms include altered breath sounds, diminished lung capacity, diminished oxygen uptake during exercise, emphysema and pneumothorax (air in lung cavity) as a rare

continued...

complication.

Removing workers from possibility of further exposure to dust generally leads to halting the progress of the lung abnormalities. Where worker-exposure potential is high, periodic examinations with emphasis on lung dysfunctions should be undertaken

Dust inhalation over an extended number of years may produce pneumoconiosis.. Pneumoconiosis is the accumulation of dusts in the lungs and the tissue reaction in its presence. It is further classified as being of noncollagenous or collagenous types. Noncollagenous pneumoconiosis, the benign form, is identified by minimal stromal reaction, consists mainly of reticulin fibres, an intact alveolar architecture and is potentially reversible.

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

DUNLOP FINE COAT RENDER:

■ Not available. Refer to individual constituents.

PORTLAND CEMENT:

■ Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

GRADED SAND:

• No data of toxicological significance identified in literature search.

CARCINOGEN

Silica dust, crystalline, in the form of quartz or cristobalite International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs

Group

1

Section 12 - ECOLOGICAL INFORMATION

PORTLAND CEMENT:

Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. Environmental processes (such as oxidation and the presence of acids or bases) may transform insoluble metals to more soluble ionic forms. Microbiological processes may also transform insoluble metals to more soluble forms. Such ionic species may bind to dissolved ligands or sorb to solid particles in aquatic or aqueous media. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms.

When released to dry soil most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. Environmental processes may also be important in changing solubilities.

Even though many metals show few toxic effects at physiological pHs, transformation may introduce new or magnified effects.

A metal ion is considered infinitely persistent because it cannot degrade further. The current state of science does not allow for an unambiguous interpretation of various measures of bioaccumulation.

The counter-ion may also create heath and environmental concerns once isolated from the metal. Under normal physiological conditions the counter-ion may be essentially insoluble and may not be bioavailable. Environmental processes may enhance bioavailability.

DO NOT discharge into sewer or waterways.

GRADED SAND:

. . .

Ecotoxicity				
Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
Dunlop Fine Coat Render	No Data Available	No Data Available		
portland cement	No Data Available	No Data Available		
graded sand	No Data Available	No Data Available		

Section 13 - DISPOSAL CONSIDERATIONS

■ - DO NOT allow wash water from cleaning or process equipment to enter drains.

- It may be necessary to collect all wash water for treatment before disposal.

- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.

- Where in doubt contact the responsible authority.

- Recycle wherever possible or consult manufacturer for recycling options.

- Consult State Land Waste Management Authority for disposal.

- Bury residue in an authorised landfill.

- Recycle containers if possible, or dispose of in an authorised landfill.

Section 14 - TRANSPORTATION INFORMATION

HAZCHEM:

None (ADG7)

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: ADG7, UN, IATA, IMDG

Section 15 - REGULATORY INFORMATION

POISONS SCHEDULE None

REGULATIONS

Regulations for ingredients

portland cement (CAS: 65997-15-1) is found on the following regulatory lists;

"Australia Exposure Standards", "Australia High Volume Industrial Chemical List (HVICL)", "Australia Inventory of Chemical Substances (AICS)"

graded sand (CAS: 14808-60-7) is found on the following regulatory lists;

"Australia - New South Wales Hazardous Substances Prohibited for Specific Uses", "Australia - New South Wales Hazardous Substances Requiring Health Surveillance", "Australia - South Australia Hazardous Substances Requiring Health Surveillance", "Australia - Tasmania Hazardous Substances Prohibited for

Chemwatch Independent Material Safety Data Sheet Issue Date: 21-Jul-2011 NC317ECP

CHEMWATCH 25-8987 Version No:2.0 CD 2011/2 Page 10 of 10 Section 15 - REGULATORY INFORMATION

Specified Uses", "Australia - Tasmania Hazardous Substances Requiring Health Surveillance", "Australia - Western Australia Hazardous Substances Requiring Health Surveillance", "Australia Hazardous Substances", "Australia Hazardous Substances Requiring Health Surveillance", "Australia High Volume Industrial Chemical List (HVICL)", "Australia Inventory of Chemical Substances (AICS)", "Australia Occupational Health and Safety (Commonwealth Employment) (National Standards) Regulations 1994 - Hazardous Substances Requiring Health Surveillance", "International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs"

No data for Dunlop Fine Coat Render (CW: 25-8987)

Section 16 - OTHER INFORMATION

■ Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: 21-Jul-2011 Print Date: 21-Jul-2011

This is the end of the MSDS.